An Implementation of the Spacetime
Constraints Approach to the Synthesis of
Realistic Motion

Par Winzell
November 26, 2004

Abstract

This thesis presents a computer implementation of the Spacetime
Constraints approach to synthesizing realistic-looking motion for crea-
tures in a simulated physical environment.

Earlier work in this field has shown that using efficiency as the
criterium for selecting among the physically valid ways a creature can
accomplish a task yields visually pleasing results.

Creatures are constructed from rigid bodies linked through angu-
lar joints and given the power of motion through torque-producing
muscles. The state of the system is described in Cartesian and an-
gular coordinates, which are represented over time as piecewise cubic
polynomials with C! transitions, in the Hermite function basis. Time-
varying muscle tensions are also explicitly represented, and physical
validity of the motion is achieved through a finite-element formulation
of the Euler-Lagrange equations.

Subject to these constraints, an objective function measuring the
energy consumed by the creature’s muscles is minimized over time.
This is a traditional, highly non-linear, constrained optimization prob-
lem, to which is applied an SQP-style solver package. The current im-
plementation outputs a graphical representation of the animation on
Pixar’s RenderMan™ format.

The implementation and the software packages it depends on may
be freely redistributed and used for non-commercial purposes.

Contents

1 Acknowledgements

2 Introduction
2.1 Omne Motivation
2.2 Means of Motion
2.3 The Spacetime Control Paradigm
2.4 Another Computational Approach
2.5 This Thesis
2.6 Electronic Access
3 Problem
3.1 Continuous Dynamics
3.1.1 Equations of Motion
3.1.2 Simulation
313 Control
3.1.4 Variational Dynamics
3.1.5 Impact and Regularity Issues
3.1.6 Realism
3.2 Discrete Dynamics 0oL
3.2.1 Hermite Cubics,
3.2.2 Finite Element Method
3.3 Formulating the Problem
4 Solution
4.1 The Optimizer.
4.1.1 Sequential Quadratic Programming
412 ADOL-C.
4.2 Description of the Dynamics System
4.3 Designing a Solutiono
4.3.1 An Example Scenario
4.3.2 Objective Functions
4.3.3 Physics-enforcing Constraints
4.3.4 The Dynamics Algorithm
4.4 Assembling the Solution
4.4.1 Variable Stage Lengths
4.4.2 Bounding the DOF
4.4.3 Muscles: Implicit vs Explicit
444 Visualization

5 Implementation 34

5.1 Tree of C++ Classes 34

6 Results 37
6.1 The Link Chain 37
6.2 The Ubiquitous Desk Lamp 38
6.3 Field Survey and Comparison 40
6.3.1 Symbolic Algebra 0oL 41

6.3.2 Hierarchical Basis 42

6.3.3 Other Spacetime Work 42

6.3.4 Decision Trees and Databases 42

7 Conclusions 43
7.1 Over-optimization L. 44
7.2 Motion control L 44

List of Figures

SO W N =

Basis functions ¢ and ¢® L. 15
Scaled basis functions (solid) defining a cubic (dashed) on [0,1] 16
A double pendulum; simulation and control 24
A three-limbed arm stretching: two local minima 38
A leaping desk lamp L. 39
Alongerleapo 39

1 Acknowledgements

This thesis project has been a presence in my life for many years, in one
form or other. Many thanks go to my thesis advisor Thomas Karlsson for
his good humour and heroic patience ever since I first stumbled over this
subject matter in 1993. My darling wife Karen has valiantly endured neglect
in competition with a whole menagerie of sadly crippled animation subjects.
All of my family has been supportive, as always. Several people proofread
and commented the paper — thank you.

This implementation relies heavily on free software. It uses a package for
non-linear optimization problems containing the solver H()P and the frontend
Omuses for it. These programs were written by Riidiger Franke at Technische
Universitit Ilmenau, and are distributed under a license that allows free
redistribution of the source-code. This package relies in turn on software
from a host of other authors, similarly available to the public.

Many of the figures in this paper were drawn using the Blue Moon Ren-
dering Tools by Larry Gritz. The thesis was written in KTEX, on a machine
running the free operating system Linux. Much respect is due the authors of
these systems and others for making their efforts available to the public.

2 Introduction

The field of Computer Graphics is a varied and rewarding one. There are
any number of utterly fantastic goals to work towards, and no shortage of
unsolved problems to tackle on the way. Progress in the field is rapip: a cease-
less explosion of hardware ability, improvements in fundamental algorithms,
the development of new mathematical tools such as wavelets, the influx of
diverse competence, all these things serve to widen and deepen the field. If
the things we can do now are amazing, what we will be able to do tomorrow
is simply breathtaking.

2.1 One Motivation

One of the many fantastic ideas that drive the Computer Graphics (CG)
field on at such a pace is that of the full-blown virtual reality, self-contained
and viewer-independent, bubbling with complex behaviour and artificial life.
Seen as an artistic medium, virtual reality is something completely new. Skills
which we have acquired drawing static images and making single-perspective
movies will be useless in application to the canvas of “reality”.

Even on a lesser scale than this, non-trivial three-dimensional spaces will
need to be populated, densely and in detail, with objects and sub-systems
controlled by computer algorithms, interacting with each other within the
physical simulation of their virtual environment.

The overwhelming technical problem this represents is perhaps most nat-
urally tackled through an abstraction approach: on the one hand, the encom-
passing framework of the environment, establishing the rules under which ob-
jects interact with their environment and each other; on the other, the design
and implementation of the sub-systems and objects that fill the virtual void,
and which may rely completely on the existence of the virtual environment.

A virtual world with virtual grass and virtual trees should be roamed by
virtual creatures. How could one possibly begin implementing living beings?
In years to come, this question will undoubtedly receive much attention. For
the purposes of motivating this thesis, it suffices to note that the sub-problem
of motor control is a central one.

Given computer code libraries that generate motion from sufficiently high-
level control, the remaining problems would not seem nearly so daunting.
Scripting behaviour for a little field-mouse would be next to trivial if there
was at our disposal a template for a living, breathing virtual creature, needing
only a will plugged into it to become itself. In the light of this realization,
exploring the nature of motion seems warranted.

2.2 Means of Motion

If a rock is dropped on earth, it falls to the ground in a deterministic mo-
tion, trivially computed. We can build more complex mechanical systems and
simulate their equally deterministic states forward in time using a computer
(or a lot of patience). The evolution of such a system may be considered the
inevitable result of the forces at work within it.

The rock above moves as it falls, but the verb mowve can mean something
else when a willis involved. Living creatures tense their muscles, which apply
torque to their joints, causing them to move. A significant portion of their
brain sits between the urge to perform some physical action and the resulting
motion, a portion dedicated to the task of motor control.

Whether completely accurate in neurological terms or not, it makes sense
to explore this mind-body division further for our purpose, which is that of
artificial motion synthesis. There is the high-level control (the will) with the
task of evaluating, at whatever rate it is able, the ever-changing perceptions
of the environment, updating its internal notions of the state of the world,
all the while generating decisions.

In contrast, the task of motor-control is firmly grounded in the present,
occupying itself largely with the relationships between velocity and acceler-
ation. It is this latter functionality that we would ultimately wish to have
available as an abstraction layer, for implementations of virtual creatures to
rely on.

Intriguingly, the problem of generating realistic-looking motion satisfying
high-level demands for a virtual creature can be considered basically solved.

2.3 The Spacetime Control Paradigm

At the SIGGRAPH conference of 1988, Andrew Witkin and Michael Kass
presented the paper [1], “Spacetime Constraints’, which showed in practice
that visually pleasing behaviour can follow from fundamental concepts.

In their method, the system to be animated is parameterized in a set of
degrees of freedom (DOF) — for example, a planar creature constructed from
rigid bodies linked through angular joints. The DOF are discretized over an
interval of time, yielding a finite set of variables. Each possible configura-
tion of these variables then represents an animation of the system over the
interval.

Next, forces are brought into play — the creature is given muscles — dis-
cretized similarly and represented with another set of variables. Equations of
motion are constructed using symbolic algebra techniques, constraining the
system so that the values of the time-varying torques produced by the mus-

cles and those of the the positional DOF are constrained by the requirement
of conformance to physical law.

High-level control is achieved through constraints on the DOF and other
relevant quantities at different instants of time. Most commonly, the DOF
at the beginning of the animation are given, and their rate of change are
constrained to be zero. Often, what we want to solve is a boundary-value
problem, where we also fully constrain the system at the end of the animation.
Such a scenario is akin to the keyframe interpolation problem that plays such
a major part in contemporary computer animation software systems.

These control problems are generally very underconstrained; they have
infinitely many solutions. To pick one solution out of many, we discriminate
through the criterium of efficiency. Finding the most efficient solution is an
optimization problem for which there are known algorithms.

The solution is then the explicit description of the chunk of spacetime rep-
resenting the most efficient way for the creature to perform the high-level task
defined by the constraints. There is no room for surprises in this paradigm;
it is an offline computation given exact knowledge of the environment for the
duration of the animation.

Since the solution includes the description of joint torques, it tells us not
only what the optimal motion looks like, but also how it came about; exactly
how the creature must tense its muscles at each point in time to move just
so. We could later place the virtual creature in the physical simulation of a
virtual reality. The computed optimal torques could be applied from moment
to moment, and the creature would execute the correct motion — as long as the
environment exactly matched that which was used in the Spacetime Control
computation.

2.4 Another Computational Approach

Five years later, J. Thomas Ngo and Joe Marks presented [9], “Spacetime
Constraints Revisited”, at SIGGRAPH ’93. As the title implies, this too is a
method where control over the solution takes the form of constraints in space
and time. The reported results of this paper and that of Witkin and Kass are
also similar. Nevertheless, the two methods are very different. In fact, they
actually solve different problems.

Instead of working directly on optimizing a portion of spacetime, Ngo and
Marks use the indirect control method of creature behaviour. The output of
their computer program is not a single animation, but a set of reflex-like
stimulus-response reactions for the creature.

These reflexes are parameterized and applied to them is a genetic al-
gorithm, which is another approach to solving optimization problems. The

7

algorithm constructs a “population” of different solutions and subjects them
to forced evolution. Behaviour configurations that yield desirable results in
physical simulation are considered superior, and are allowed to “mate” with
high frequency.

The desirability criterium is encoded in a fitness function, and includes,
among other things, any requirements on pose and position at different in-
stants of time, i.e., the spacetime constraints. The population moves towards
a state where its members optimize this fitness function and this state is
taken to be the solution.

2.5 This Thesis

Where Witkin and Kass” method constructs a single sequence of motion for
a creature. Ngo and Marks give the creature something of a mind. If placed
in a virtual world, it does have the ability to act on its perceptions of the
environment and respond to events. In practice, though, these behaviour
controllers are so simple that they do very little but act out the desired
motion.

As the discipline of artificial life progresses, behaviour-controller methods
become increasingly proficient, and outgrow applications as simple as this.
The paper [10] is worth study in this context.

What the methods have in common is the high-level control; a function
discriminates bad motion from good, and it is the responsibility of the au-
tomatic solvers to satisfy this function as well as they can. An interesting
idea for the future could be to generate a library of classified motions using
the former method, and make this knowledge base available to behaviour
modules evolved using the latter.

The rest of this paper will present an implementation similar to the origi-
nal one by Witkin and Kass. We start by identifying and posing the problem,
in preparation for the choice of a specific solution method. The implemen-
tation is then described, and finally some results are presented along with
some discussion and a survey of what else has been done in this field.

2.6 Electronic Access
There is a web-site dedicated to this thesis project at
http://alyx.com/"zell/exjobb

where the paper and the computer implementation can be found along with
pointers to the packages on which it depends, and possibly errata and up-
dates. The author may be contacted at the email address zell@alyx.com.

8

3 Problem

3.1 Continuous Dynamics

In this thesis, we will consider the synthesis of motion of objects in an abstract
physical reality. We make the requirement that the configuration of these
objects (the creatures) can be described at all times using a finite set of m
generalized coordinates ¢;(t). Thus the state of the system at time ¢ is fully
described by the ¢;(t), ¢;(t) and so to create a motion over an interval of time
is to fully define the ¢; on it.

In general, the ¢; can represent virtually any physical magnitude and the
associated generalized force (); then takes on a dimension such that @); dg; al-
ways constitutes work. See e.g. [16] or [17] for a full introduction to analytical
mechanics. In this thesis, the ¢; will be Cartesian and angular coordinates,
and the @);, correspondingly, Cartesian forces and torques.

3.1.1 Equations of Motion

We restrict our attention to physically valid motion, to systems whose evolu-
tion over time is governed by Newton’s laws of motion. These are generally
ordinary differential equations of the second order. With the system defined
in terms of generalized coordinates, we can impose the constraints of physics
through Lagrange’s equations,

d (0L oL
_dt(aq') 0 Q: =0, 1<i<m, (3.1)

which for now we take to be valid at all times. The function L = T — V|
the Lagrangian function, is the difference between the system’s total kinetic
and potential energies. It encodes the physical structure of the creatures and
their environment, as well as any conservative force-fields such as gravity. In
general, g—; is zero, and g}; represents conservative forces such as gravity,
and is of dimension generalized force, like the);. The latter are needed
to represent forces that are not conservative, and so cannot be included as

gradients of the scalar field V.

3.1.2 Simulation

Considering L to be a fixed property of the system, (3.1) intertwines the ¢;
and the @); in accordance with Newtonian mechanics. The special case where
the @; are known and the ¢;(t9) and ¢;(to) specified at some time ¢, is an
initial value problem. For these, the (3.1) fully determine the exact future

state of the system, and solving these equations forwards in time is known
as physical simulation.

To illustrate this, consider a ball falling to the ground from the roof of
a tower. If the ball has mass m > 0 and the acceleration of gravity is G,
the Lagrangian function is L =T — V = m(¢*/2 — Gy) and the ball will be

governed by
d(my)

dt
until it hits the ground, at which time other forces come into play. The height
of the ball above the ground, y(t), is known at the time ¢, when we drop it,
as is its velocity, y(tp) = 0, so

-mG=0 < =G (3.2)

y(t) =G (t—to), y(t) =ylto) + G@

By solving this equation we have performed a tiny physical simulation,
a trivial case with a closed-form solution. In problems only a little bigger,
the equations are non-linear and recourse must be taken to numerical ODE
solvers.

The quick and accurate simulation of complex physical systems is an im-
portant problem and the subject of much research, in the computer graphics
field and in others. However, simulation does not create motion, it merely
solves the equations of motion to calculate the inevitable deterministic ef-
fects of the (); accelerating the system just so at each point in time.

(3.3)

3.1.3 Control

Where in simulation problems the forces (); are given and we want to solve
for the g;, control problems typically arise when we treat the (); as variable
and make demands on the g¢;.

Let’s expand the example above by keeping the initial conditions and
adding a second condition that ¢(¢;) = 0 for some given ¢; > tg, i.e. a soft
landing at a pre-determined time. Since we cannot make demands on gravity,
such a condition can only be satisfied if the ball can be influenced in some
other way. Let us assume that we have at our disposal a (somewhat strange)
external force Fy,-y = k(t—ty)-y that acts on the ball. Here, k is constant over
the course of the motion, but from the point of view of the control problem,
it is a variable for which to solve. The equation of motion is now

d(zy) —mG =F, < ji{t)=G+ %(t — t) (3.4)
y(t) =G (t _ to) + %@ (3.5)

10

and

. k (t; —tg)? 2mG
t)=G(ty —t ———=0=k=- 3.6
y(t1) (t1 0)+m 5 — (3.6)
We have solved a control problem — computer, within a given parame-
terization, the force to apply to the system, for a requested system state to

come about.

3.1.4 Variational Dynamics

The equations (3.1) are differential equations that must hold at each point
in time. In the circumstances we shall be dealing with, a weaker formulation
of these equations turns out to be equivalent. Let 7(¢) be any arbitrary,
well-behaved function defined on [tg, ;] with the additional property that
T](to) = ’I](tl) = 0. Then

[{5() -2 quhoass @

certainly holds when (3.1) does. Under certain regularity conditions, the re-
verse implication holds as well, and (3.7) holding true for all such n(¢) implies
(3.1) holding true for all ¢ € [to, ¢;].

To see why, consider the possibility that (3.1) is non-zero for some t €
[to, t1]. Since by regularity requirements this function is continuous, there
must then exist an interval containing ¢ where the function is strictly positive
or negative. An 7(t) could always be constructed that exposed this fact,
leading to a contradiction of (3.7). The result follows. The 7(t) are called
trial functions.

Integrating (3.7) by parts, we have

o] [%0 (G s e@)nof a0 ps

to

and n(tg) = n(t1) = 0 so
" [OL() . OL(1))
/to { 24, n(t) + (—aqz- +Q,—(t)> n(t)} dt =0 (3.9)

Writing differential equations in this variational form leads us naturally
towards the Finite Element Method (FEM) for solving them. Note that an
intrinsic property of this integral formulation is to make statements that hold
over intervals of time. In contrast, the (3.1) have no awareness of past and
present, but are relationships, from moment to moment, between cause and
effect.

11

3.1.5 Impact and Regularity Issues

In general, physically sensible Q; are bounded, the ¢; lie fully in C° and the
¢ in C'. However, situations such as impact arise, when the ¢; must have
discontinuities. For example, when two objects in the virtual world collide,
they do so inelastically. There must be an instant effect, because they are rigid
bodies and do not compress. This amounts to infinite acceleration over an
infinitismal time period. To avoid tangling with this unpleasant singularity,
consider a “hammer blow” of magnitude P and direction s. The blow applies
for a very brief period of time 0t a force

_ P
F=F-§=—-3 3.10
5 (3.10)
on the system at a point p. Recalling that @); dg; always has the dimension of
work, the force F' must influence the system according to the transformation

. aﬁ P— . aﬁ
0g; B 0g; '

(3.11)

Because the interval of time dt is small, the state of the system can be
considered constant over it. As 0t — 0, F' — oo, but P does not vary. The
equations of motion (3.1) yield in the limit

d (0L oL oL
wama () a2 () e

and application of (3.10) and (3.11)

. Op . Op
CO, = (5t-F)-5- —P.§- 1
t-Qi=(0t-F)-§ 24, s 24, (3.13)
w0 oL
A =P 14
(8%) Z (814

where P; is generalized momentum, and is distributed from P according to

the same pattern (3.11) as dictates the Q; from I i.e.

_ 0p op

p—p.2L2_ P
9q;

P-s- .
i dq;

(3.15)

In other words, just as forces may be applied to points p on creatures over
an interval of time, so may blows of pure momentum at discrete instants of
time, with transition conditions given by (3.14).

12

For a simple example of when this may occur, consider a creature landing
on a hard floor. At the moment of impact there is a jolt which travels in-
stantly through its body parts and discontinuously changes the angular joint
velocities. In a living creature, where this cannot happen, skeletal elasticity
absorbs the shock up to the shattering point of bone.

For the remainder of this paper, we will consider the duration of the
animation to be structured as sequential intervals [to, t1], [t1, t2], ..., within
which the Q; are bounded, the ¢; continuous, and (3.9) hold. These intervals
we call stages. They may be separated by discontinuity blows, as outlined
above, with transition conditions on the form

oL .. OL
7)™ 3,

(t))=P, j=1,... (3.16)

The variational equations of motion (3.9) are integrated over each stage
independently of the others, and we can treat them as independent sub-
problems. Most of the rest of this work in this paper will assume an interval
[to, t1], which we take to be a generic stage satisfying the continuity assump-
tions outlined above.

3.1.6 Realism

In the example control problem of the falling ball, a single additional discrete
variable £ was introduced and a single corresponding additional constraint
was imposed. These cancel out, and there is a single correct solution.

In the general setting, there is not. Animation problems are undercon-
strained. For one thing, there are many control variables; the); vary quite
freely. Second, there are not many constraints. The whole point of the Space-
time paradigm is that control is sparse and high-level. Typically, boundary
pose and position are constrained along with a few conditions such as “jump
this high”. There are infinitely many variations a creature may make in its
precise muscle control, all of them resulting in satisfactory jumps.

So it is not enough to define a task to perform and to demand physical
validity — there are still infinitely many possible motions. There must be a
criterium for discriminating between these possibilities. We have discarded
from our consideration all motion that violates physical law — leaving us with
motion that is real — we now turn our attention to the realistic.

This is where we descend into the thoroughly subjective. We are trying
to find some unifying, rational property of motion that appeals to the senses
as realistic-looking. An obvious place to start this search is motion that is
truly real; in this case, that exhibited by living, biological creatures. While

13

we touch this field only lightly, it may be that a basic understanding of
physiology is as important as mathematical and computer-science skills are,
in an endeavor such as this.

It seems reasonable to suppose that one of nature’s fundamental criteria
in discriminating between good and bad behaviours of motion is efficiency.
Animals spend a lot of time gathering food for energy, and there is surely
great evolutionary pressure on their motor control centers to perform without
wasting such a precious resource. It is the great claim to fame of the Space-
time Constraints method that it has shown in practice that realistic-looking
motion does follow from this intuition.

Efficiency can be formalized well: given a system description and a well-
defined physical task to perform, find motion that performs it while burning
as little energy as possible, i.e.

min W (Q, q,q) subject to (3.17)
{Q, q, q} satisfy the laws of physics (3.18)
{Q, q, ¢} perform the appointed task (3.19)

where W' is a measure of the metabolic energy consumed in all the muscles
of the creature over the duration of the motion. The first set of constraints,
those enforcing the laws of physics, are expressed by the equations of motion

(3.9).

3.2 Discrete Dynamics

The variables of this problem are real-valued functions defined on an interval
of time [t, t1], elements of infinite-dimensional function spaces. For a numer-
ical algorithm to be able to manipulate and reference these functions, they
must have a finite description. By approximating them in a subspace spanned
by a finite basis of functions ¢;(t), t € [to,t1], functions in general become
linear combinations, e.g.,

qi(t):zci7j¢j(t), q‘i(t):zci,jq‘sj@), (3.20)

and are thus represented by a finite sequence of coefficients, such as these
¢; ;. This allows for a discrete problem formulation.

The subspaces in which we approximate the true paths will be those of
piecewise polynomials, specifically of degrees one and three. The discretiza-
tion process transforms the domain of definition [t,¢;] of the function onto
the dimensionless [0, N], and defines there N polynomials, e.g.

f&)=P/(w), wel0,1], 1<i<N (3.21)

14

08 4 01

ol
-0.05
o1 |

L L L L L 02 L L L L L
o 0.5 1 15 2 0 0.5 1 15 2

06

Figure 1: Basis functions ¢ and ¢®

for some polynomials P/ (u).

In general, for degree L these N pieces are fully determined by (L + 1)N
coefficients; 4N in the cubic case. Functions that represent muscle tension
may be discontinuous, and so these (L + 1) N-dimensional spaces are of value
to us. However, the functions that represent coordinate trajectories are at
least continuously differentiable at each stage, i.e. f € C!; a condition which
must be enforced over transitions from one piece to the other. Where one piece
ends, the next must begin, and their tangents must match as well. From one
piece to the next, then, only two degrees of freedom are introduced. This
reduces the dimension of the function space from 4N to 2N + 2.

3.2.1 Hermite Cubics

This 2N + 2-dimensional space has a very useful basis, consisting of integer
translates of functions ¢ (u) and ¢® (u), known as Hermite cubics. They
are plotted in Figure 1.

These functions are piecewise cubic polynomials defined over two intervals
(i.e. w € [i,7 + 2]). By populating [—1, N + 1] with 2N + 2 integer translates
of these functions, the desired basis is constructed. For any t € [to, 1], at
most four basis functions are non-zero. Perhaps the most striking property
of these functions is their interpolatory nature;

oV(1) =1, o (1) =0, (3.22
(1) =0, JO(1) =1, (3.23
i.e., the value of f(t) at a knot is determined by a single coefficient, that of
the associated ¢(!)(1), and the value of its derivative f by that of ¢ (1).
This is illustrated in Figure 2 which depicts a single cubic on on [0, 1] and

the four weighted basis functions that define it.
Explicitly,

)
)

V() = ¢\ (u—j), weljj+1] (3.24)

15

Figure 2: Scaled basis functions (solid) defining a cubic (dashed) on [0, 1]

with
(V(y) = —20® + 30° oV () =1+ 20° — 302 (3.25)
0 -) 1 -) ‘
(()2)(1}) =0 — % ¢§2) (v) =v° —20* + v (3.26)

The piecewise linear case is simpler, and the traditional basis for it consists
of translates of the hat function

2—u, uell,2.

¢(u) = {u welol (3.27)

3.2.2 Finite Element Method

With functions represented as finite linear combinations, differential equa-
tions like (3.1) must become statements about their coordinates in the finite-
dimensional function spaces, i.e. discrete equations on the ¢; ; of (3.20).

In [1], Witkin and Kass sample the interval [to,?;] at discrete instants
of time t = 0, h, 2h, ... and functions are represented as piecewise constants
around these points, so f; = f(t;) = f(ih) are the control variables. The
equations of motion are constructed through the method of finite differences,
where derivatives in (3.1) are replaced with differences, e.g.

fi= ft) ~ f{ti+h)— f(t:) _fin—fi
h h
and evaluated at each sample point ¢;. The result is a set of difference func-
tions on the f;.

(3.28)

16

A different possibility follows from writing the differential function in
variational form, as we did to get (3.9). Recall that in this form, the differ-
ential function is tested against an infinite set of trial functions 7(t), with
one integral equation resulting from each test. The natural way to construct
a discrete problem out of this form is to test against only a finite subset of
trial functions 7(t). By choosing specifically the basis functions of (3.20) as
trial functions, we have arrived at the Finite Element Method, the FEM.

Applying this procedure to (3.9), which is the equation relevant to this
thesis, yields a set of discrete equations

/: {ag—q.(iﬂéj(t) + (ag_éj) + Qi(t)) qu(t)} dt =0, Vj. (3.29)

In simple situations, the functions ag_(;), T and Q;(t) are linear. The

example problem of the falling ball employed earlier has just such a simple
structure. Writing the acceleration law (3.4) in variational form,

m/ { <G+ by) 77(15)} dt =0, (3.30)

then expanding y as a sum of basis functions,

m/ {ch(b] (G+ F>77(t)} dt =0, (3.31)

and finally using those basis functions ¢; that are zero at the boundaries as
trial functions — and rearranging — yields

ch]/ b, (1)t dt+(G+ >/ ¢i(t) dt = 0. (3.32)

This may look to be more complex than what we started out with rather
than a simplification, but note that with

/ gb])i (t) (3.33)

fi= aﬁl() dt (3.34)

to

it reduces to

F,
> ey + (G + ﬁ) fi=0. (3.35)

J

17

Here, a; ; and f; are static, determined by the basis functions only, and
so easily precomputed. The equation (3.35) is a linear system of equations in
the ¢, ;, which can be solved in a single step, using any of countless numerical
methods.

This example constitutes a trivial yet illustrative application of the FEM
for discretizing ODE’s. Note that when the ¢ have narrow support, as they
do both in the Hermite and the Hat bases, most of the a; ; are zero, so (3.35)
is a sparse problem. This is essential for keeping the time-complexity of the
problem managable.

In the general, highly non-linear case of multi-body equations of motion,
the rearrangement performed above is not possible, and the solution cannot
be found in a single step. In the next section, the equations of motion (3.29)
will be constraints in an optimization problem, in which they are the major
source of non-linear complications. To account for them we will be forced
to take an iterative approach, where the functions g—(i and 8% are approxi-
mated with local Taylor expansions, and a sequence of equation systems like
(3.35) are constructed. We will be using solutions to these approximative
sub-problems as directions in which to search for the best next step towards
the true solution.

3.3 Formulating the Problem

With functions discretized, the tentative problem formulation (3.17) can be
restated in the standard form of a discrete optimization problem — to find

min f(Z), (3.36)

TERT
subject to variable bounds

(3.37)

§|
[\
8l
IN
8
e

and constraints
a(z) <e(z) < éu(). (3.38)

The general case of this problem remains unsolved; methods generally
can guarantee only to find local minima. Special cases exist with stronger
results, e.g. when the objective function and/or the constraints are linear
or quadratic. The quadratic case is important to us because in practice,
solutions to nonlinear problems are often sought by repeatedly solving locally
approximative quadratic subproblems.

18

4 Solution

4.1 The Optimizer

To solve the problem (3.36) we need a solver for non-linear optimization prob-
lems. We have chosen HQP by Riidiger Franke [13], which seems to perform
very well, and has a non-commercial license — an important consideration,
since the stated goal of this project is to write a freely available implemen-
tation.

4.1.1 Sequential Quadratic Programming

HQP (the “H” is for “Huge™!) implements the SQP algorithm. It uses Newton’s
method on another Lagrangian function

L(z,N\) = f(z)— Z Nici(Z), (4.1)

quite different from the kinetic potential function L used in the equations of
motion earlier in this paper. The function £ combines the objective func-
tion with the effect of the constraints through the method of Lagrangian
multiplers, the \;. When L is (at least locally) minimal,

VL(zZ,A) =0 (4.2)
Vi) = Z \i - Vei(z), (4.3)
ci(z) =0, (4.4)

then f(z) enjoys a local extremum or a saddle point there relative to the
constraints. It should be noted that this discussion is valid for equality con-
straints only. Inequality constraints are a fairly complex extension, and left
out of this discussion for the sake of clarity.

Newton’s method solves an unconstrained optimization problem by re-
peatedly expanding the objective function as a power series and solving the
quadratic problem generated by truncating higher powers. The quadratic in-
formation is available through the Hessian, and applying the method to £
yields for each iteration £ an equation

2 B Yk, (0T k) Y (k
V2L (@™, B) (&(k)) = —vLE® AW, (4.5)

19

solved for a direction
s=(20) (4.6)

along which a line-search is performed. The value of £ is sampled along s
to confirm the quality of the approximated solution. In this situation it is
possible to prove convergence towards a local minimum, and a theoretical
quadratic rate of convergence once the process comes “near enough” to such
a minimum.

If the search-space is well-behaved in the vicinity of the current solution,
the quadratic approximation works well and the solution to the sub-problem
makes for a good next step in the iterative scheme. More commonly, the
landscape is non-linear to the point of chaos, “near enough” occurs very late,
and convergence is sluggish.

In practice, the analytical Hessian V2L is not used in (4.5). Instead, a nu-
merical approximation is constructed step by step from the gradient informa-
tion. There are several ways to perform this construction; HQP implements
BFGS updates (see e.g. [18]).

HQP repeatedly evaluates not only the objective function f(z) and the
constraints ¢;(Z), but also their gradients, for various z. These values consti-
tute the only perception the solver has of the search-space, and writing the
computer code to evaluate them makes up the bulk of the implementation
effort.

This data is fed to HQP through a C++ front-end called Omuses [14],
which not only provides the interface between the core solver and our code,
but also makes available several powerful tools to allow for a simplified prob-
lem description.

4.1.2 ADOL-C

The current implementation makes use of only one of these tools, namely
automatic differentiation implemented by the ADOL-C [15] package. By us-
ing C+-+ operator overloading and active variables, ADOL-C builds up a
run-time record (a tape) of the operations performed in the algorithms that
evaluate e.g. f(Z). Using this information, it can then automatically compute
the exact analytical gradients those same expressions.

For a trivial example, consider a function, something like

adouble KineticParticleEnergy(adouble Mass, adouble Velocity) {
return Mass * Velocity * Velocity / 2;

}

20

This is a computer representation of a well-known physical formula; it
evaluates T = m% The adouble type it returns, however, represents not
only the value of the expression, but also a record of how it was computed.
As a consequence, the chain rule may be applied,

2

VT = (Vm) % +muv Vo, (4.7)

and since the input parameters v and m are also adoubles, this procedure can
be applied to them as well, until the dependency of VT on the most primal
variables in the system has been computed.

Such functionality is very useful for our purposes. It reduces the scope
of the problem to providing a computer code for the evaluation of f and
the ¢;. The necessary derivative information is then automatically computed.
Compared to having to calculate the derivatives ourselves, ADOL-C makes
the implementation quite a bit easier, and also more secure. It is easy to
make a mistake differentiating complex expressions.

4.2 Description of the Dynamics System

The Euler-Lagrange equations we rely on for physical validity are extremely
general, and generalized coordinates may take on virtually any physical di-
mension. However, to establish specific algorithms for the evaluation of f and
the various c¢;, we first need to settle on an exact system formulation.

This implementation handles the planar case only. Creatures are built
from rigid bodies, limbs, in a tree-like topology. There is a root limb, which
has an absolute position in the plane and an absolute angle. At different
points on the root limb, descendant limbs attach through angular joints. The
absolute angle 0; of a descendant j of limb 7 is represented by the relative
angle o to its parent limb, i.e., 0; =0, + «;.

Thus, if two thin rods are connected through a joint where o = 0, the
rods will be in alignment. In general, the state of an n-limbed creature is
represented by two Cartesian and n angular coordinates.

We can introduce an ordering of the limbs according to a depth-first
recursion scheme. If S(7) is the set of limbs directly attached to limb 4, and
there are no loops, then recursively evaluating S constructs the set of all
limbs that descend from limb i. We write j > ¢ for all limbs j in that set.
Conversely, j < i means limb j lies between limb ¢ and the root (or is the
root). We sometimes refer to limbs ordered in this fashion as lying inboards
and outboards.

Limbs that are mutually independent, such as the two hands of a human,
do not enter into this ordering scheme.

21

The absolute limb angles # are simple sums,

and clearly % = 1 when 7 > j and 0 otherwise.
J

The inboards base of each limb 7, where it attaches to its parent, is denoted
b;. Modifying a; clearly has the effect of rotating the system of limbs j > i
around b;; thus the dependency of a vector p that lies outboards from i is
expressed through a rotational operator

cos(a;) —sin(a;)

R(eq) = <5in(0zi) cos(a)) (4.9)

and through it alone. This in turn means that differentiating p by «; affects
this R only, i.e.

ngz(ﬂm@)_wwm>. (4.10)

cos(ay) —sin(ay)

Noting finally that R’ = FR with

E:G ?), (4.11)

we have for j =1

oF, . -

oF; I

where 7; is the center of mass of limb j, a quantity we will use a lot below.

Each rigid-body limb ¢ has two intrisic physical properties we shall use,
namely its mass m; and its radius of gyration k;, a geometric property that
essentially measures how reluctant the body is to rotate. An expression for
the kinetic energy of this limb is

my - A
T = TR + K262) (114

which also makes clear the nature of k;.

The muscles of the creature sit at the joint where a limb j connects to
its parent . Whenever it applies a torque 7; ; to limb 4, by the law of action
— reaction, it must counter-apply a torque of equal magnitude but opposite
sense —7; ; working on limb j. Now since we have chosen the generalized

22

coordinate «; to encode the angle between the two limbs, the associated
generalized force (); corresponds precisely to a such a pair of opposite torques.

This means that a muscle between limbs ¢ and j contributes to @); only
and, conversely, the (); represents exactly this kind of relative torque. We
will refer to muscle-tension values simple as 7;.

Apart from muscles, the system is influenced by a set of Cartesian forces
and impulses F; and J;, that work directly on points defined on the crea-
tures. The effect of these are given by (3.11) and (3.14). Finally, gravity is a
conservative force-field and so we include it in the scalar potential part V' of
the Lagrangian L =T — V.

4.3 Designing a Solution

Further design issues may now be settled by deciding on how the user would
go about setting up a control problem;

e The abstract environment is created and configured. The level of grav-
itation is set. Each creature is constructed from a root point by attach-
ing limbs outwards, building the tree structure. Cartesians are explicitly
allocated and associated with the position of the root; likewise angles
with the limbs. At this point, no reference to time has been introduced.

e Next, stages are defined. The length of time of the stage is declared, as
well as the number of polynomial pieces N into which to cut it.

e On each stage, representations must be declared for every DOF ¢; al-
located for creatures in the first item, above. All piecewise polynomials
defined on a stage share the same N. These representations automat-
ically become variables of the optimization problem. The two most
common representations are possibly that using the Hermite basis, and
the constant one, which allocates no optimization variables at all.

e Any muscles that the creatures should have on each stage are declared,
and explicit representations are allocated for them, similar to the pro-
cess above.

e Any task-defining constraints are declared for each stage. For example,
in the first stage of the sequence, one would normally specify the full
state and its derivative; all the ¢;(t9) and the ¢;(to).

e Any active forces acting on the stage are declared and represented
explicitly with functions, just as above. The force is then applied to
a specific point on a specific limb. Any momentum blows to occur at

23

Figure 3: A double pendulum; simulation and control

the end of each stage are similarly declared and directed. These can be
constant, or more commonly, variables in the optimization problem.

4.3.1 An Example Scenario

For an illustrative example, consider a short simulation of a double pendulum.
The world is given a basic gravity of —9.81m/s% Two long thin rods A and
B created, one meter long each, and angular DOF « and [represent their
positional state. Cartesians X and Y are allocated and rod A is attached to
the root (X,Y). Rod B is attached to the other end of rod A.

Next, a single stage is defined of duration 1 second, with N = 6. Because
the pendulum is supposed to hang, not fall, we represent X and Y with
constants zero, but a and § are made fully Hermite. Finally, constrain

a(0) = —7. &(0) = 0, (4.15)
B(0) = 5. B(0) =0, (4.16)

and the problem is fully determined. The result can be seen in Figure 3. This
is an initial-value simulation without any control over the motion.

It is illustrative to analyze this example further. After the discretization,
the functions «(t) and [((t) are each represented as sums of 2N + 2 basis
functions, yielding a total of 4N + 4 = 28 free variables in the optimization.
The equations of motion (3.9) are evaluated for o and (3 respectively using the
2N basis functions that are zero at the boundaries of the stage interval, for a
total of 4N = 24 constraints. Finally adding the four initial-value constraints
total up to 28, matching the number of variables to solve for. The problem is
uniquely determined, as one would hope! The objective function never comes
into play, here. There is only one solution.

24

This can be made a control problem by adding a muscle in the joint
between the rods and,for example, demanding that at the end of the motion,
the two rods be aligned and their relative angular velocities zero, i.e.

B(t) =0, B(t) = 0. (4.17)

If the muscle is represented in the Hermite basis, another 2N +2 variables
are needed to represent it, but only two additional constraints are introduced.
So, the problem is now underconstrained, and some objective function must
come into play to drive the solution towards minimal effort.

One solution is displayed in Figure 3. As mentioned earlier, this is only
guaranteed to be a [ocal minimum. There may well be some other way to
accomplish this task with even less effort.

4.3.2 Objective Functions

Earlier in this paper we discussed how to discriminate between the infinity
of valid motions our control problem generates, in an attempt to pick a
plausible, realistic-looking one. It was argued that a sensible heuristic would
be to attempt to minimize some measure of the metabolic energy consumed
in the creature’s muscle. The time has come to pick a good measurement.

One possibility that springs to mind is to take the basic physical definition
dW =3, 7; da; and integrate to get

f=AW= Z /t () éy(t) dt, (4.18)

the amount of energy added to the system by the muscles.

Unfortunately, by this f, there is no cost associated with an energy-
conserving action such as standing up and then sitting down. Muscles do
not really work that way. If they did, nobody would get tired from doing
push-ups or lifting heavy weights, so it seems (4.18) is not a very good mea-
surement of metabolic energy consumption.

Another possibility would be to minimize the (square of the) norm of the

physical power consumption 4 ie.

dt
dW
f= HE

which seems to be the objective function used in [1]. However, this one is
also a bit suspect. By this function, push-ups do tire a person, but holding a
piano over one’s head does not.

=X [y (4.19)

25

The third and last possibility we consider is
F=YlnlE =3 [0 (1.20)
J J

i.e. minimize the torque magnitudes, the muscle-tensions, over the motion.
This function is used in [5] and the authors refer to the paper [19] to provide
factual support for using this measurement. It is the function we choose to
implement, and it was used to produce Figure 3.

It is useful to remember that in the end, the correct definition of f is an
entirely subjective matter. The stated desire is visual realism, and that is not
a well-defined notion.

4.3.3 Physics-enforcing Constraints

The majority of the work involved in this implementation is spent on the
physical constraints intertwining forces and trajectories. The FEM has al-
ready been presented, and the remaining task is to identify and analyze the
physical values that must be combined into the equations (3.29).

The three quantities in (3.9) break down as follows,

° aL , generalized momentum, is entirely due to the kinetic energy T

component of the L =T —V, because V does not depend on velocities.

o 2L has the dimension of generalized force. From V there is the contri-
butlon of gravitational force, and from T, there are inertial terms due
to the curvature of the coordinate system.

e ();, finally, collects forces other than gravitation, i.e. the creature’s mus-
cles and the effect of the Cartesian forces working on it.

To compile these equations of motion, then, requires computer-code that
evaluates the derivatives of T" and V relative to the ¢; and those of T' to ¢;,
and also distributes the effects of forces according to (3.11).

4.3.4 The Dynamics Algorithm

Consider a creature and one of its bodyparts ¢. Allow joint-angle «; to vary,
but fix all other DOF. This is the situation in which partial differentiation
takes place. It is clear that only the portion of the creature that lies outboard
from i is dependent on «;. The kinetic energy of this portion is

= o S {1+ K2} (4.21)

Jzt

26

Differentiation with respect to joint-angles and joint-velocities yields

8042- 8042'

or 9T arj ,00; |
da; O, Zmﬂ{” k”@oz }_

or or® . OF;
> 7

(4.23)
=S {i g+,)
Jjri
where we have used the identity 3 8” = % which we do not motivate but

which holds true for this 7.

Our task is now to derive recursive formulations for these values. This
will allow an algorithm to traverse the tree-structure of the system’s bodies
and compute all the values needed in the equations of motion (3.9) in time
linearly proportional to the number of bodies in the system!.

Using (4.12) we rewrite (4.22)

Zm]rj da, Zm]rj bz} =

Jjri jrt

- ERID)
—ijr] 7] — b Zm]rj—— bi] K, (4.24)

Jjri Jjrt

where we have used the fact that E[v]-© = 0 in general, and introduced the
vector quantity K-, which has a very simple recursive update,

Jjei

and an equally simple physical interpration; namely the centre of mass of the
system of bodies 7 = ¢, multipled by its mass,

= mj=m;+ Mg, (4.26)

Jjzi

Noting finally that the velocities 7; never depend on the Cartesian root

position of the creature, and thus % = g—T = 0 completes the recursive
Y

"While the algorithm does run in linear time, it is obviously not possible to construct
a dense Jacobian in less than quadratic time. However, in this implementation, that task
falls to ADOL-C.

27

formulation of (4.22). Next, (4.23) decomposes similarly;

ij {rj —0—/6204]} =

j=i
—ij {r;-E +k2a]} =
Jj=i
= ij {TJ [r5] + k:2oz]} Eb Zmﬂ] =
jri Jj=t
—UZ+P°—EDb]- K (4.27)
where
Jjri
Jjri
The dependency of T on the root wvelocity is seen to be
(4.30)

h A A >
g Mt ~_§ m;r; - T =2 - K.,

and likewise for g, completing the differentiation of T". To account for gravity,

ov { ijr]} _

ﬁai 8041

| S0 -

jri j=i

Jjri
=G-§-E[K>—bM"] (4.31)

Finally, the Cartesian forces F; working on points p; transform into the
generalized system of coordinates according to (3.11), i

-y F- (432)
J

0g;

which need be written on a recursive formmat similar to those above in
order for the linear-time traversal algorithm to compute it. Expanding again

28

by (4.12) and reordering yields

Jri Jjri
=F; — Elb;]- F" (4.33)
with
Fr = Z Fy - Elp;] = F; - E[pi] + Fg (4.34)
Jri
FP =) Fj=F+Fg,. (4.35)
i

It should be mentioned that we have taken some liberties here with the
ordering. The j > i notation was defined for limbs, and there may be several
forces acting on different points on a limb. This means that there is no exact
order of forces. However, in the two recursive formulations above, only the
order of forces within a limb is undefined, and that order does not matter to
the computation of the values.

The algorithm now proceeds by traversing each creature from the root
out to the tips, building the 6;, the b; and other kinematic quantities, then
synthesizing the more complex, recursive expressions back towards the root,
generating the target quantities for (3.9) in the process.

4.4 Assembling the Solution

Clearly, numerical integration techniques must be applied to equations of
motion (3.9) and the objective function (4.20).

For simplicity, we will be using Simpson’s rule. Consider a function f
defined on [a,b]. Divide this interval into n pieces and write f; = f(a + ih)
where h = (b — a)/n. Then

b
/ f(z)de ~ g(f0+4f1 +2fo+4fs+ ...+ 2fno+4fa 4+ fr) (4.36)

approximates the integral with an error that behaves like h* as h — 0. In
our implementation, the n is hardcoded in the program.

When the optimizer calls us to fill in its values, the following takes place.
The objective function f and the ¢; are all initialized to zero, and we loop

29

over each stage, where all the work is done. Each stage then loops both over
the N polynomial pieces into which it is split, and inside this loop, over the
n sampling points dictated by Simpson’s rule above. At each of these n - N
sampling points ¢, a vast hierarchy of expressions is constructed.

First, the ¢;, ¢;, the muscle tensions and the magnitude of active forces
are explicitly evaluated from their representations at ¢. Then, the dynamics
algorithm outlined above is executed, recursing through the creatures, gen-
erating the kinematic entities on its way out and synthesizing the kinetics
coming back.

We now have a snapshot of the system, at instant £. While the recursive
algorithm ran and expressions were evaluated, the automatic differentiation
package ADOL-C built an exact record of how each final expression was
constructed and how it depends on each input. This information is included
in the snapshot.

Numerical integration next proceeds by adding the contribution of the
system at ¢, according to the snapshot we just took. Like everything else,
this addition takes place under the supervision of ADOL-C, so the integral
values slowly accumulate an enormous tree of dependency information.

Finally, remaining constraints are evaluated, those that are not equations
of motion. These are usually simple, governing a single value at a single
instant of time. An exception are the constraints that govern the transitions
from one stage to the next. These enforce the continuity of the coordinate
trajectories and also of their generalized momentums, taking into account
also the effects of any impulses active at the end of the current stage.

4.4.1 Variable Stage Lengths

In all of the above, the length T}, of some stage k£ has been considered static
and part of the problem formulation, but this need not be so: T} can be made
variable as well, solved for along with everything else in the optimization
problem.

In fact, when there is a definite task to be performed, such as “kneeling”,
it seems pointlessly restrictive to decree that the movement take exactly
0.3 seconds. Humans who are asked to kneel will do so at a sensible pace.
Too quickly, and the downward velocity becomes large and muscles must
work very hard to stop the motion fluently. However, a very slow pace is no
better, because one would spend several seconds with knees painfully half-
bent, supporting all one’s body weight.

In this example, then, the objective function is conver as a function of
T}, punishing any motion with too long or too short a timeframe. This gives
a stable problem, and convergence is obtained. However, there are scenarios

30

where a variable T}, leads to trouble.

In any pure simulation problem, for example, the length of simulation is
certainly a defining parameter that should be given explicitly. If it is made
variable, the problem becomes under-constrained, and there is no objective
function to compensate. In fact, this is technically a singular problem, al-
though in practice the solver usually does not encounter this singularity and
the iterations do converge.

Another difficulty is when gravity is turned off. Generally, gravity acts as
something of a clock in these problems, and without it there is nothing to
measure time against. An astronaut performing some task in space would, if
energy were at a premium, move exceedingly slowly. Depending on the objec-
tive function used, this could occur in abstract reality as well and cause the
optimization process to drive the stage length towards infinity; an unstable
problem without solution.

In practice, even in well-defined problems, we want to place bounds on the
stage-length. Not only do we want to avoid having to consider what happens
when 1), — 0 or T}, — oo, but we also have an idea of approximately what
the motion should look like, if it should take a tenth of a second, or a half.

As far as implementation goes, allowing T} to vary is not difficult, espe-
cially using automatic differentiation. In fact, it is sufficient to flag T} as an
active variable, and it is immediately included in all dependency considera-
tions. Stages may be set up either with a fixed or with a variable length in
this implementation.

Finally, it should be mentioned that this topic has been explored and
implemented previously, in the paper [7] (and probably countless others).

4.4.2 Bounding the DOF

Most of the animation problems we want to solve require bounds on the pos-
sible values that the coordinate trajectories can take. Sometimes the bounds
are absolutely essential. Natural-looking movement evolved around the bio-
logical limits of joints, and we have no chance of emulating it if we cannot
enforce similar boundaries in our problems.

Unfortunately, this is non-trivial for the Hermite basis. Recall that within
any given polynomial piece, a function represented in this basis is the sum of
four non-zero functions. We want to bound this sum not only at one point,
or two, but continuously, over the whole stage;

fuin < P/ (1) < foaes we0,1], 1<i<N. (4.37)

Recall Figure 2 and the properties (3.23). Bounding the function at u =
{0, 1} is simple; two basis functions interpolate the function there so fu,;, and

31

fmax can be used as discrete bounds on the two corresponding coefficients.

Bounding the interior is trickier, and in fact the solution we give for this
thesis is less than completely satisfactory. We sample (4.37) at u = {3, 3}
and enforce the bounds there through explicit constraints. A cubic can attain
at most one maximum and one minimum, and is very regular. Being bounded
at four points, it is difficult for the function being represented to violate the
boundaries to any large degree between those points. Thus, the solution is
largely successful. Nevertheless, it is ad-hoc and the bounds can be violated
to some degree.

This is unfortunate, because the optimizer is very good at exploiting just
this kind of weakness. If violating the joint-boundaries lowers the value of the
objective function a great deal, and the only way to violate the boundaries
is, say, to oscillate severely, then severe oscillation is exactly what we will
get. In practice, it is not difficult to spot this problem when it occurs in an
animation. In these cases, one increases the number of sample points to e.g.

{i, %, %}, tightening the bound further at some cost in execution time.

4.4.3 Muscles: Implicit vs Explicit

In the process outlined so far, muscles are explicitly represented in the op-
timization problem as DOF in their own right. The laws of mechanics in-
tertwine the ¢; and the @); in the form of constraints, and the optimization
objective becomes a function of the ();. While this is a sensible way to think
about the situation, for computational purposes it could be considered slack.
Introducing a slew of variables (); that are allowed to vary with complete
freedom and then constraining them utterly relative to the ¢;, more than
doubles the size of the optimization problem.

The fact is, essentially the same equations that constrain the ¢; and the
(QQ; can be used to calculate the @Q; from the ¢;. Thus, instead of an objective
function that depends on variables (); that in turn depend completely on g;,
the former could be entirely eliminated. Can there be any justification for
explicitly representing the @); as we do?

The answer is not clear. If the (); are eliminated, the size of the problem
certainly decreases dramatically, but its densily increases correspondingly. In
fact, cutting out the); does not so much reduce the problem as compact it.
At the heart of HQP sits a sparse linear equation solver, the running time of
which depends on the number of non-zero matrix elements rather than the
actual size of the matrix.

The question of whether large and sparse is better than small and dense
is common to many technical applications like this one, and the answer often
depends on the computing hardware and numerical algorithms at hand.

32

Using ADOL-C, an implicit-muscle implementation is surprisingly sim-
ple. The means of computing @); are in the basic Euler-Lagrange functions
(3.1) themselves. In the case of the angles «;, substituting the recursive re-
lationships already derived above cancels out beautifully to

Q_i OL\ 0L d (0L\ 9L
T dt \ 0 dg; dt \ 0¢; oy

_d (s o T PR v _
—E(m+4%—EMklﬂ—(fﬂMKJ+a%—

—US+ PP - B F+G-j E[KS—bMZ] (4.38)

where U, P® and K are new and must be calculated. Their recursive
definitions are trivial, as is the case of the Cartesians.

If the ; are eliminated, what happens to the equations of motion? Their
role is largely to constrain the relationship between the ¢; and the @);, and
now there are no (); to constrain. Getting rid of the equations of motion
seems odd, but it is not really. A creature with muscles in every joint has
perfect control over the movements of its limbs relative each other, and there
s no physically invalid motion. There is no need to constrain the g;.

The only relevant matter then is how much work the muscles must per-
form for some specific motion, i.e., the calculation of the objective function
from the g;. This was previously a trivial function of the 7;, but now contains
all the complexity of the Lagrange equations.

The only real difficulty in writing such an implementation arises when
there is some joint ¢ where there should not be a muscle, where the connecting
limb should dangle freely. This “lameness” must then be explicitly enforced

in a constraint, i.e.
d (0L oL
i (aa) ~5a; (4:39)

There was not time to include this in the implementation. However, it
would make for an interesting comparison, and is something to consider as
future work.

4.4.4 Visualization

When the solution is found, the true output consists of values for the opti-
mization variables. However, since this is not much to look at and besides,
the program already knows what the values represent and how the creatures
are constructed, it makes sense to take advantage of this by also generating
output with more structure.

33

There are many ways of doing this, for this implementation, we choose to
output scenery information on the RenderMan™ format designed by Pixar
Inc. This is a standard language for describing 3D scenes, frame by frame. It
was designed for computer animation. The Blue Moon Rendering Tools by
Larry Gritz, with a non-commercial license, accepts RenderMan™ output
and renders it on-screen or in image files. Such files can later be compressed
into movies.

There are other output formats one could choose. The Virtual Reality
Modeling Language (VRML), for example, would certainly be up to the task.
It should not be difficult to write additional modules for generating different
kinds of output.

5 Implementation

Writing the actual code follows quite easily from what has come before. We
choose to work in C++. This is the language the HQP interface Omuses
was designed for, also, the problem structure works well with object-oriented
(O0) design.

Throughout this project, a pragmatic relationship to computer science
has been maintained. The implementation is not beautiful. It violates many
basic tenents of object-oriented programming: objects are used largely as
data dumps. The classes are not designed as “black boxes”. Most of their
variables are public, and objects write in each other’s data spaces with little
hesitation.

Thus the structure of the problem is not mirrored in the design of the
C—++ classes as much as it could be. Nevertheless, there is discipline in how
the code behaves and a well-defined order in which things are evaluated.
The automatically differentiated expressions are built layer by layer, from
optimizer input to optimizer output.

5.1 Tree of C++ Classes

e (Class World is a global nexus. It is the first object created when a
new problem is set up. Subsequently, it is where Creatures, DOFs, and
Stages automatically register upon creation. The level of gravitation
is kept here. This is also where all other objects request allocation of
space in the optimization-variable and constraint arrays. In the main
update loop, class World calls upon the Stages to do the real work, and
then calls the Visualizer module to generate visual output.

34

e Class Stage holds lists of Muscles, Forces, and Constraints active over
each stage, Impulses to apply at the end of it, and Funs that do the
actual representation of time-varying functions on the stage. These all
register with the Stage when they come into being. It also defines the
length T of the stage, the number of polynomial pieces N and the
handy quantity h = T'/N. In the update loop, class Stage performs the
necessary calls to all the external objects listed above, and performs
the numerical integration of the results. This class registers with class
World in its constructor.

e (Class RigidBody implements the dynamics algorithm of this paper.
Practically all the quantities calculated in the recursive scheme are
class variables, rather than local to the recursion. This allows us to
treat them as constrainable quantities. The body also keeps a list of
the BodyPoints defined on it, and a pointer to the DOF which holds its
angle « relative to its parent body. Finally, it has a mass and a (square
of the) radius of gyration.

— Class Sphere is a convenient RigidBody.
— Class ThinRod is a convenient RigidBody.
— Class Disk is a convenient RigidBody.

— Class Cylinder is a convenient RigidBody.

e Class AnchorPoint represents a point in the plane, a vector quantity
that is a function of the DOF ¢;. It can be used as an expression in
constraints, but exists mainly as an anchoring place where RigidBodies
connect to each other, through the use of sub-class. ..

— Class BodyPoints is an AnchorPoint that also represents a point
on a RigidBody. As such it has a position (z,y) defined within
the local coordinate system of the body on which it is defined.
RigidBodies connect to AnchorPoints through Bodypoints.

— Class Creature is fundamental. It implements the root of any crea-
ture and as such is the only entity that references DOF X and Y.
It is an AnchorPoint without a body, so for the creature to have
a real physical existance, at least one RigidBody must attach to
this Creature point. This class registers with class World in its
constructor.

e (Class DOF represents a generalized coordinate. On each stage it must

have a Fun representating it. It defines the variables ¢, ¢, ¢, %—5, %—Z, Q,

35

and P (from (3.15)), which are calculated during the snapshot process
and written into the DOF instances. This class registers with class
World in its constructor.

e (Class Muscle simply coordinates a Fun with an angular DOF and lets
the former apply a torque to the latter. This class registers with class
Stage in its constructor.

e (Class Force applies a force to an AnchorPoint in a predefined direc-
tion. The magnitude may be flagged as a variable of the optimization
problem. This class registers with class Stage in its constructor.

e (Class Constraint is an abstract class. Its reason for existing is to guar-
antee to whatever references it that it will be able to evaluate the
constraint it represents.

— Class ValConstraint implements class Constraint. It accepts a ref-
erence to an ADOL-C-supervised variable and constraints it ac-
cording to however the class is configured. The value it watches
can represent virtually any quantity computed during the snap-
shot process. Simple examples include DOF ¢;, the positions of
AnchorPoints, and impulse magnitudes. This class registers with
class Stage in its constructor.

— Class VecConstraint implements class Constraint. [ts operation is
much like ValConstraint, but it works on vector quantities (of size
two).

— Class Link represents the transition between two stages A and B.
For each DOF in these stages, it enforces continuity of trajectory
(¢) and generalized momentum (%—5) unless the representations of
the DOF are constant on both stages. This class registers with

class Stage in its constructor.

e (Class Fun is an abstraction of a real-valued function defined on a stage.
Its value for each point in time ¢ is constructed during the snapshot
process and may be the target object of Constraints. It can be used
to represent Muscles, Forces, and DOFs. This class registers with class
DOF or class Stage in its constructor.

— Class Hermite implements class Fun. It uses the Hermite basis that
we have covered in some detail. Upon creation it automatically
allocates 2N 4 2 optimization variables, possibly 2N constraints
for the FEM equations of motions, if it is representing a DOF,

36

and possibly 2N constraints for the bounds, if it is bounded. This
class registers with class Stage in its constructor.

— Class Hat implements class Fun. It is the hat basis of (3.27). It
works much like Hermite, but it is simpler. For example, it does not
need the extra sample constraints for the bounding; constraining
the coefficients themselves suffices.

— Class Single implements class Fun. It allocates a single optimiza-
tion variable, which holds its value over the stage. Thus it is con-
stant, seen as as a function of time, but constant at a level that
is variable from the optimizer’s perspective. The value k in the
trivial control-example in the second chapter of this thesis would
be represented with an instance of this class.

— Class Constant implements class Fun. This is a truly constant
function, its value set when it is created.

o Class Visualizer is called to generate structured output, currently on
the RenderMan™ format. It performs a sequence of snapshots, evenly
spaced in time across the length of the interval and over the stages
(which may be of variable length) and generates an animation frame for
each such point in time by recursing over the Creatures in the system.

6 Results

The aim of this thesis was to write an implementation of the Spacetime
Constraints paradigm and to make it available to the public. The code and
the theory behind it — as described above — constitute the main result and
accomplishment of the endeavour. However, in the process of writing it, some
example outputs have also been collected that could be considered results,
and these are described and presented here.

6.1 The Link Chain

The simplest example of a multibody problem is probably the single chain of
links, anchored somewhere in the plane. The case of two links, for example,
is known as a double pendulum and is a classic problem in mechanics.
Figure 4 depicts a triple-linked chain with muscles both at the shoulder
and at each joint. The chain starts out hanging straight down and we ask
that it straightens to the right in half a second. The total length of the chain
is two meters, normal gravity is active, and joint angles are restricted to
lie within [—m,7]. This is a simple problem and a solution is found fairly

37

quickly. Even so, starting the iterative solution process at slightly different
initial guesses yields two very different solutions.

The requirements made on the two solutions displayed are identical, but
the optimizer is started off with different initial values for its variables, and so
it initially sees different portions of the search-space. It follows a minimizing
path as best it can using its linear/quadratic approximations, but lacks any
global perspective; it cannot see over search-space ridges even if there is a
great abyss on the other side, and so can easily get stuck in little potholes.

The initial variable configuration of the first run corresponds to a sequence
where the chain swings at a constant angular velocity, without bending at
the joints, from —7 to 7. In the second, the root link moves instead from —7
to 0, and the two outer links curve slowly upwards. In both solutions, the
creature attempts to mimimize its torque at the root by curling up before
extending, but in the second, it comes up with an even more clever use of
its resources. The value of the objective function in the second solution is
substantially lower than in the first. We will let this illustrate the problem
of global optimization.

6.2 The Ubiquitous Desk Lamp

In 1986, Pixar turned heads with the movie “Luxo Jr.”, starring an ani-
mated desk-lamp. In their 1988 paper, Witkin and Kass again used this
model for demonstrating their method. The leaping desk-lamp has become
an archetype, and this paper would not feel complete if it did not reproduce
their result.

Figure 5 outlines the animation. Luxo is constructed from simple cylin-
ders and a sphere, made from materials of various densities. Joint bounds

Figure 4: A three-limbed arm stretching: two local minima

38

Figure 5: A leaping desk lamp

Figure 6: A longer leap

39

are very important in this problem, especially if one wants to maintain an
anthromorphic attitude towards the lamp. For example, unless forced not
to, Luxo will bend his “spine” back without compunction, and this seems to
grate on the human eye.

Luxo’s jump is a three-stage problem; in the first stage, the base is nailed
to the ground by representing the position and the attitude of the base as
constants. This lets Luxo gather momentum in his upper body. In the second
stage, Luxo flies, and all DOF are fully Hermite. The third stage is much like
the first, except that the base is nailed down at a different place, forcing him
to make the jump to get there. Luxo’s pose is constrained at the beginning
of the first stage and at the end of the third.

Between the second and third stages, three impact vectors are applied to
the base, to represent the effect of Luxo slamming inelastically into the table.
One acts along the axis, representing instant friction. The other two are
applied to the front and back edge of the base and are directed along g, these
work together to stop any part of Luxo from falling through the ground. The
magnitude of these impulses are variable, solved for along with the rest of
the problem.

These variable impact vectors are vital. They introduce freedom over the
stage transition. Without them, C! continuity would be enforced and Luxo
would have to maneuver in mid-flight in such a way as to set the base down
smoothly, without any impact. This would completely change the nature of
the animation. Of course, it is a simple matter to constrain the magnitude
of the impulse so that Luxo has to perform a gentle touchdown. Likewise,
forcing him to come down hard will probably cause him to jump higher first.

Figure 6 shows a longer jump, from earlier in the implementation effort,
where a flaw in the joint-angle bounds lets Luxo get away with an awkward-
looking bend in his “spine”.

6.3 Field Survey and Comparison

In 1992, Michael F. Cohen published [2], which reproduces and extends the
original work of Witkin and Kass. Cohen represents DOF' as piecewise cubic
polynomials, in a B-spline basis. This basis spans a smoother function space
than does the Hermite one we use, and its functions have wider support, but
it is otherwise similar.

Perhaps the most attractive feature of Cohen’s code is the integration
with a visual, interactive environment, where results are displayed as iteration
progresses and the animator stays in control throughout the process.

In comparison, the implementation we present in this thesis allows no
control once the optimization process starts. There is no integrated visual

40

environment, although output is generated at every iteration, which can be
displayed simultaneously using some graphical program.

6.3.1 Symbolic Algebra

Like Witkin and Kass, Cohen uses symbolic algebra techniques to generate
most of the complex expressions that are computed implicitly by the dynam-
ics algorithm in this thesis. Such symbolic methods essentially compile, from
a problem description, explicit expressions in the problem’s defining variables
for all the values that will need to be computed during the optimization pro-
cess. Typically, symbolic compilation happens once, perhaps as a separate
step performed before the actual solver code is run.

In contrast, automatic differentiation as performed by ADOL-C is entirely
a run-time affair, consisting essentially of a string of multiplications by nu-
merically computed Jacobians. There are more similarities than differences
between these two methods, however. Both take over the task of comput-
ing derivate information, allowing the system implementor to concentrate on
defining the problem correctly in terms of its governing equations. Both can
exact a heavy toll in decreased efficiency.

The efficiency problem is redundancy — automatic methods must be ex-
plicitly programmed to perform algebraic simplifications that humans do
without much meditation. These can range from trivial, such as -1 = x, to
the kind of complex manipulation mathematicians thrive on. Without these
reductions, expressions may grow very quickly and become costly to evaluate
during the optimization process.

The paper [3], presented at SIGGRAPH ’94, further matures Cohen’s
work by alleviating some of its efficiency problems. The authors borrow from
the field of compiler design optimization techniques such as that of common
sub-expression elimination. By evaluating equivalent expressions only once
and reusing the computed value, redundancy is decreased. The authors report
greatly improved efficiency.

Nevertheless, the paper [4] from 1995 points out that the basic complex-
ity problem remains even after common sub-expressions are eliminated. The
authors present a symbolic language in which joint torques and states, limb
positions and angles, and other high-level physical attributes of the system
may be referenced as first class variables. This is clearly a good language in
which to express e.g. constraints and objective functions.

The language encodes assumptions about the structure of the mechanical
system, and the underlying implementation is thus able to use a dynamics
algorithm not entirely unlike that presented in this thesis to quickly compute
the relevant quantities. The structure assumed in the paper is a tree topology

41

much like ours, but in a full 3D environment rather than the (very much
simpler) planar case with which we have worked.

With this paper, the computation of the Jacobian of the dynamics expres-
sions in a symbolic-algebra implementation achieves the theoretically optimal
time complexity of O(DOF2) — which our implementation would, as well, were
ADOL-C not used.

6.3.2 Hierarchical Basis

The paper |3] introduces another enhancement as well: a wavelet transforma-
tion of the B-spline basis is performed, with the result that the optimization
code is able to affect coarse, sweeping changes on one hand and and precise,
local ones on the other, through tweaking different basis coefficients.

The authors report dramatically improved convergence properties after
this transformation. A few stabs at wavelet support were made for this im-
plementation, but the time-frame was far too limited. The wavelet transfor-
mation becomes useful when the number of piecewise polynomials N used to
represent a stage grows large.

6.3.3 Other Spacetime Work

Another exploration of the spacetime control thread is [6]. In this paper, the
authors analyze one specific problem (human diving) and make simplifica-
tions to the governing equations, in an attempt to avoid the full complexity
from which the full space-time formulation suffers but still produce essentially
valid motion.

This is in some contrast to the other works, which are very general in
their application. The endeavour is successful, resulting in the full somersault
sequence being calculated in less than a second.

Martin Preston has implemented a parallel Spacetime solver in [8] where
he reports good results.

6.3.4 Decision Trees and Databases

Using a method related to Spacetime Constraints, Pedro S. Huang and
Michiel van de Panne apply in [11] classical Artificial Intelligence techniques
to the problem of motion control.

Rather than build discrete equations of motion that hold over time, they
perform physical simulation forward in time. A decision tree is constructed,
where nodes represent system states and edges represent control, such as
e.g. some configuration of joint torques. Thus from any node at time ¢t = ¢,
traversing some edge means tensing muscles in some corresponding way for

42

a discrete period of time. The state represented by the child node is then
determinstically computed using physical simulation.

The size of this tree is hugely exponential in the number of time steps.
By evaluating nodes according to some fitness criterium, the authors search
it for desired motion. Because of the enormity of the tree, pruning methods
and heuristics are used to make the search managable. Letting edges repre-
sent low-level control such as joint torque, the authors solve highly unstable
control problems using this technique, such as that of a single-jointed, two-
limbed “acrobat” not only balancing properly, but managing a flip as well.

The edges can equally well represent higher-level control. Thus each deci-
sion, each edge-traversal can represent not a simple tensing of some muscle,
but a complex combination over a longer period of time. For example, the
choice could be between one of many jumps possible from the current state.
Searching such a tree constitutes motion planning. The authors have Luxo
bouncing across rough terrain with peaks and chasms, where the ability of
the tree-search algorithm to plan several jumps ahead may be essential.

In the paper [12], Alexis Lamouret and Michiel van de Panne present a
related work, revolving around a large database of sample motions for some
virtual creature. Thus for some specific creature state and environment state,
this database may be queried for motion samples that may possibly suit the
setting.

The authors use the terrain-exploring Luxo mentioned above to generate
an example database, where the motion primitive of a choice is a single hop.
These are classified according to length and height of the jump and stored.
Then, as Luxo finds himself in the virtual mountains, he need only search
the database for the best motion fit he can find, adapt it somewhat to satisfy
e.g. continuity requirements, and then execute it.

7 Conclusions

The idea of using optimal control for realistic-looking motion has some fun-
damental problems. While it is certainly true that it produces motion that
is not only physically valid but also fairly real-looking, the creature does not
really move in a way that makes sense to humans. When sequences become
longer than a few tenths of a second, the over-optimized nature of the motion
starts becoming apparent.

43

7.1 Over-optimization

Sometimes the best-looking motion is achieved by aborting the process after
only a few iterations. In later stages, the algorithm starts finding paths that
lower the value of the objective function and do not violate any constraints,
yet would never really be displayed by anything living, anything that had to
make its decisions in real-time.

Even in an athlete’s trained movements, there is built into the body-
language an awareness of limitations not only of body but of mind. Human
motor control is very reluctant to let joints and muscles get near extreme
states, where possible injury always threatens.

The result is that living beings display a conservative, focused use of mus-
cles that optimized spacetime creatures do not display. Unless hemmed in on
all sides by constraints, the algorithm will continuously “nudge” the solution
until every resource available to the creature is used to its utmost efficiency.
The spacetime control approach has all the time in the world to tinker with
and make perfect motions that biological creatures have to perform as instant
reflexes.

As an example, in several attempts to produce the jump of Figure 5, Luxo
insisted on bracing against the inertia of his own head in order to correct his
pose in mid-flight, which looks utterly unrealistic. Humans are very protective
of their necks and do not lightly allow whip-lash effects to occur. But with
Luxo, discouraging such behaviour is difficult. We can penalize heavy use of
his neck muscles, and this seems like a good idea. But as it turns out, this
makes Luxo reluctant to hold his head steady, and the result is a jump where
his neck looks broken.

The way humans hold their heads while jumping simply does not follow
from the efficiency rule. We keep our neck muscles tense in a state of an-
ticipation, and this goes for other muscle groups as well. A living creature,
ready to pounce into action is not relaxed, but tense.

It is possible that given a sufficiently accurate model of muscles, joints
and other purely biological factors, the only fault with the optimized motion
would be unrealistic perfection. More complex objective functions can encode
more of these factors, probably at a heavy cost in efficiency.

7.2 Motion control

This possibility regardless, high-level control simply is not the strength of this
paradigm. There are infinitely complex psychological considerations to any
non-reflexive motion. Rather, the most accurate classification of the method
omes perhaps through the realisation that, despite all its complexity difficul-

44

ties,
The problem of “keyframe interpolation”, i.e. of generating valid motion

it s the simplest method to do what it does.

over intervals bounded on both sides by complete state descriptions, is fun-
damental to Computer Graphics animation. Current solutions in industry
are impressive but, in the end, compromised. Human tolerance is limited for
animation that fundamentally violates our sense of reality. The prettier and
more life-like the rendering of creatures becomes, the more disturbing it is
when they move wrong. Any progress made towards animation systems that
takes better account of the realities of physical law must be greeted with
enthusiasm.

References

1

2]

3]

4]

[5]

(6]

7]

18]

Witkin, A. and Kass, M., Spacetime Constraints, Computer Graphics
22(4) (August 1988), pp. 159-168

Cohen, M. F., Interactive Spacetime Control for Animation, Computer
Graphics 26(2) (July 1992), pp. 293-302

Liu, Z., Gortler, S. J., Cohen, M. F., Hierarchical Spacetime Control,
SIGGRAPH Proceedings (1994), pp. 35-42

Zicheng, L. and Cohen, M. F., An Efficient Symbolic Interface to Con-
straint Based Animation Systems, Microsoft Research Technical Report
MSR-TR-95-27

Rose, C., Guenter, B., Bodenheimer, B. and Cohen, M. F., Efficient Gen-
eration of Motion Transitions using Spacetime Constraints, SIGGRAPH
Proceedings (1996), pp. 147-154

Zicheng, L. and Cohen, M. F., Decomposition of Linked Figure Motion:
Diving, 5" EuroGraphics Workshop on Animation and Simulation (Oslo,
Norway, 1994)

Zicheng, L. and Cohen, M.F., Keyframe Motion Optimization By Relaz-
ing Speed and Timing, Proceedings of the 6'" Eurographics Workshop
on Computer Animation & Simulation, Springer Verlag (1995)

Preston, M., Parallel Spacetime Animation, Proceedings of the 6" Eu-
rographics Workshop on Computer Animation & Simulation, Springer
Verlag (1995)

45

9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

18]

[19]

Ngo, J. T. and Marks, J. Spacetime Constraints Revisited, SIGGRAPH
Proceedings (1993), pp. 343-350

Gritz, L., Hahn, J. K., Genetic Programming Evolution of Controllers
for 3-D Character Animation, Genetic Programming 1997: Proceedings
of the 2" Annual Conference, pp. 139-146

Huang, P. S., and van de Panne, M., A Search Algorithm for Planning
Dynamic Motions, Proceedings of the 7** Eurographics Workshop on
Computer Animation & Simulation, Springer Verlag (1996), pp. 169-
182

Lamouret, A. and van de Panne, M., Motion Synthesis By FErample,
Proceedings of the 7" Eurographics Workshop on Computer Animation
& Simulation, Springer Verlag (1996), pp. 199-212

Franke, R., HQP: a solver for sparse nonlinear optimization, Technische
Universitédt Ilmenau (1997)

Franke, R., Omuses: a tool for the Optimization of multistage systems,
Technische Universitét Ilmenau (1997)

Griewank, A., Juedes, D. and Utke, J., ADOL-C: A Package for the
Automatic Differentiation of Algorithms written in C/C++ (1996)

Goldstein H., Classical Mechanics, Addison-Wesley, Reading, MA (1980)

Hildebrand, F. B., Methods of Applied Mathematics, Prentice-Hall, En-
glewood Cliffs, NJ (1965)

Fletcher, R., Practical Methods of Optimization, John Wiley & Sons,
(1987)

Burdett, R. G., Skrinar, G. S., and Simon, S.R., Comparison of mechan-
ical work and metabolic energy consumption during normal gait, Journal
of Orthopaedic Research 1, (1983), pp. 63-72

46

